HW3 Due: April 16th

1 Bayesian perspective of Lasso regression

Recall that the Lasso regression can be formulated as the following optimization problem:

$$
\hat{\beta}^{\text {lasso }}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min }\left\{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\mathbf{x}_{i}^{T} \beta\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right\}
$$

where $\lambda>0$ and $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{T}$. Now consider its Bayesian counterpart where we have

$$
\begin{aligned}
& y_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(\beta_{0}+\mathbf{x}_{i}^{T} \beta, \sigma^{2}\right), \quad i=1, \ldots, n \\
& \beta_{j} \stackrel{i i d}{\sim} \operatorname{Laplace}\left(0, \tau^{2}\right), \quad j=1, \ldots, p
\end{aligned}
$$

1. Write out the log density of the following terms:

- $\log p\left(y_{i} \mid \beta, \sigma^{2}, \tau^{2}\right)$
- $\log p\left(\beta_{j} \mid \tau^{2}\right)$

2. Show that the posterior density $p\left(\beta \mid y, \sigma^{2}, \tau^{2}\right) \propto \prod_{i=1}^{n} p\left(y_{i} \mid \beta, \sigma^{2}, \tau^{2}\right) \prod_{j=1}^{p} p\left(\beta_{j} \mid \tau^{2}\right)$
3. Show that the maximum a posterior (MAP) estimate $\beta^{\text {MAP }}$

$$
\hat{\beta}^{M A P}=\underset{\beta \in \mathbb{R}^{p}}{\arg \max }\left\{p\left(\beta \mid y, \sigma^{2}, \tau^{2}\right)\right\}
$$

is the same as the Lasso estimate for any fixed $\sigma^{2}>0$ and $\tau^{2}>0$ when $\lambda=\frac{2 \sigma^{2}}{\tau^{2}}$.

2 Standard error estimate of ANOVA

Consider the one way ANOVA model

$$
Y_{j k}=\mu+\alpha_{j}+\epsilon_{j k}
$$

with the sum-to-zero constraint $\sum_{j=1}^{m} \alpha_{j}=0$ and normal distributed error $\epsilon_{j k} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$. And the linear model with dummy variables

$$
Y_{j k}=\gamma_{0}+\sum_{i=1}^{m-1} \gamma_{i} D_{i j k}+\epsilon_{j k}
$$

where $D_{i j k}$ is the dummy variable such that $D_{i j k}=1$ if and only if $i=j$. We refer to the latter model as the dummy-variable model.

1. Show that $\hat{\gamma}_{i}+\hat{\gamma}_{0}=\hat{\mu}+\hat{\alpha}_{i}$ for $i=1, \ldots, m-1$ and $\hat{\gamma}_{0}=\hat{\mu}+\hat{\alpha}_{m}$
2. Show that $\widehat{S E}\left(\hat{\mu}_{j}\right)$ can be constructed by using the variance-covariance matrix $(\widehat{\Sigma})$ estimated from the dummy-variable model.

3 JF exercise 8.10

Testing contrasts using group means: Suppose that we wish to test a hypothesis concerning a contrast of group means in a one-way ANOVA:

$$
H_{0}: c_{1} \mu_{1}+c_{2} \mu_{2}+\cdots+c_{m} \mu_{m}=0
$$

where $c_{1}+c_{2}+\cdots+c_{m}=0$. Define the sample value of the contrast as

$$
C \equiv c_{1} \bar{Y}_{1}+c_{2} \bar{Y}_{2}+\cdots+c_{m} \bar{Y}_{m}
$$

and let

$$
C^{\prime 2} \equiv \frac{C^{2}}{\frac{c_{1}^{2}}{n_{1}}+\frac{c_{2}^{2}}{n_{2}}+\cdots+\frac{c_{m}^{2}}{n_{m}}}
$$

$C^{\prime 2}$ is the sum of squares for the contrast.
Show that under the null hypothesis

1. $E(C)=0$
2. $\operatorname{Var}(C)=\sigma^{2}\left(\frac{c_{1}^{2}}{n_{1}}+\frac{c_{2}^{2}}{n_{2}}+\cdots+\frac{c_{m}^{2}}{n_{m}}\right)$
3. $t_{0}=C^{\prime} / S_{E}$ follows a t-distribution with $n-m$ degrees of freedom. [Hint: The \bar{Y}_{j} are independent, and each is distributed as $N\left(\mu_{j}, \sigma^{2} / n_{j}\right)$]
